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EXTENDED RECTIFYING CURVES AS NEW KIND OF MODIFIED

DARBOUX VECTORS

Y. YAYLI1, I. GÖK1, H.H. HACISALIHOĞLU1

Abstract. Rectifying curves are defined as curves whose position vectors always lie in recti-

fying plane. The centrode of a unit speed curve in E3 with nonzero constant curvature and

non-constant torsion (or nonzero constant torsion and non-constant curvature) is a rectifying

curve. In this paper, we give some relations between non-helical extended rectifying curves and

their Darboux vector fields using any orthonormal frame along the curves. Furthermore, we

give some special types of ruled surface. These surfaces are formed by choosing the base curve

as one of the integral curves of Frenet vector fields and the director curve δ as the extended

modified Darboux vector fields.
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1. Introduction

From elementary differential geometry it is well known that at each point of a curve α, its

planes spanned by {T,N}, {T,B} and {N,B} are known as the osculating plane, the rectifying

plane and the normal plane, respectively. A curve called twisted curve has non-zero curvature

functions in the Euclidean 3-space. Rectifying curves are introduced by B. Y. Chen in [3] as

space curves whose position vector always lies in its rectifying plane, spanned by the tangent

and the binormal vector fields T and B of the curve. Accordingly, the position vector with

respect to some chosen origin, of a rectifying curve α in E3, satisfies the equation

α(s) = λ(s)T (s) + µ(s)B(s)

for some functions λ(s) and µ(s). He proved that a twisted curve is congruent to a rectifying

curve if and only if the ratio
τ

κ
is a non-constant linear function of arclength s. Subsequently

Ilarslan and Nesovic generalized the rectifying curves in Euclidean 3-space to Euclidean 4-space

[10].

A necessary and sufficient condition for the curve to be a general helix is that the ratio of

curvature to torsion is constant, i.e. the harmonic curvature function H =
τ

κ
of the curve is

constant. In a special case, if both of κ and τ are non-zero constants, then the curve is called a

circular helix. It is known that straight line and circle are degenerate-helix examples.

Then, Izumiya and Takeuchi [11] defined slant helices and conical geodesic curves in Euclidean

3−space E3. A slant helix is a curve whose principal normal makes a constant angle with a fixed
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direction and a curve with non-zero curvature called conical geodesic curve if the function H ′ is

a constant function. Then, they proved that α is a slant helix if and only if

σ =
H ′

κ(1 +H2)3/2
= const.

Also, they gave a classification of special developable surfaces under the condition of the existence

of a slant curve and conical geodesic curve as a geodesic.

Then, rectifying curves as centrodes and extremal curves were introduced by Chen and Dillen

in [4]. They showed that the centrode of a unit speed curve in E3 with nonzero constant

curvature κ (nonconstant curvature) and nonconstant torsion τ (nonzero constant torsion) is

a rectifying curve. This characterization is only for rectifying curves which have a non zero

constant curvature and non-constant torsion (or a non zero constant torsion and non constant

curvature). Recently, Chen [5] has surveyed six research topics in differential geometry in which

the position vector field plays important roles. In this survey article the author has explained the

relationship between position vector fields and mechanics, dynamics. Furthermore, in another

paper the same author [6, 7] has introduced and studied the notion of rectifying submanifolds

in Euclidean spaces. He has also proved that a Euclidean submanifold is rectifying if and only

if the tangential component of its position vector field is a concurrent vector field. Moreover,

rectifying submanifolds with arbitrary codimension have been completely determined. Another

paper about rectifying curves is [16]. Yılmaz et al. considered nonhelical rectifying curves using

an orthonormal moving frame in Minkowski 3-space. Then, they gave some relations between

nonhelical rectifying curves and their Darboux vectors, and proved that modified Darboux vec-

tors of curves are rectifying curves. In [8], Chen has studied geodesics on arbitrary cone E3 and

showed that a curve on a cone in E3 is a geodesic if and only if it is a rectifying curve or an open

portion of a ruling. In [9], Deshmukh et al. have studied rectifying curves via the dilation of

unit speed curves on the unit sphere S2 in the Euclidean space E3. They have also proved that

if a unit speed curve α(s) in E3 is neither a planar curve nor a helix, then its dilated centrode

β(s) = ρ(s)d(s), with dilation factor ρ, is always a rectifying curve, where ρ is the radius of

curvature of α.

Scofield [13] has defined a curve of constant precession. The Darboux vector field of the curve

revolves about a fixed axis with constant angle and constant speed.

In [12], Kula and Yaylı have investigated spherical tangent indicatrix and binormal indicatrix

of a slant helix. They have obtained that the spherical images are spherical helices. Moreover,

they have shown that a curve of constant precession is a slant helix.

Ali [1] defined a curve called k-slant helix and gave various characterizations. After this study,

Uzunoğlu et.al [15] defined C−slant curves with respect to the alternative frame {N,C,W, f, g}
(also called slant-slant helix in [1] and clad helix in [14]) and curves of C−constant precession.

They showed that a unit-speed curve α is a C−slant helix if and only if

Γ =
σ′

f(1 + σ2)3/2
= const,

where σ = g/f . Moreover, they obtained that the tangent image of C−slant curves are spherical

slant curves. Also, they showed that a curve of C−constant precession is a C−slant helix.

In this generalization, we give some relations between non-helical extended rectifying curves

and their Darboux vector fields using any orthonormal frame along the curves. Moreover, we

obtain some relations between the papers [4] and [11].
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2. Basic notions and arguments

Let α : I ⊂ R → E3 be an arbitrary curve in three dimensional Euclidean space. Recall

that the curve is said to be a unit speed curve (or parameterized by arclength functions) if

⟨α′(s), α′(s)⟩ = 1 here ⟨., .⟩ denotes the standard inner product of E3 given by ⟨X,Y ⟩ =
∑3

i=1 xiyi
for each X = (x1, x2, x3) and Y = (y1, y2, y3) ∈ R3. In particular, the norm of a vector X ∈ R3

is given by ∥X∥ =
√

⟨X,X⟩. Let α : I ⊂ R → E3 be a unit speed curve which has at least four

continuous derivatives.

The notion of curvature of the smooth curve α which is invariant under the motions is im-

portant for its shape. The curvature of the curve at a point is a measure of how sensitive its

tangent line is to moving the point to other nearby points. The curvature of a plane curve is a

quantity which measures the amount by which the curve differs from being a straight line. It

measures the rate at which the direction of a tangent to the curve changes. The curvature of a

straight line is identically zero and the curvature of a circle whose radius R is defined by κ =
1

R
.

A plane curve is defined by its curvature function κ which is a function of arclength parameter

s. On the other hand, a space curve is completely determined by the curvature κ which is the

magnitude of the acceleration of a particle moving with unit speed along a curve and the torsion

τ which measures how sharply it is twisting out of the plane of curvature.

A moving frame of a curve α with arclength parameter s in the Euclidean space E3 in more

detail is defined to be a 4-tuple of vectors drawn from E3, (α(s), N1, N2, N3); where α(s) is a

choice on the curve α and (N1, N2, N3) is an orthonormal basis of the vector space E3 based on

α (t). In mathematics, a moving frame is a flexible generalization of the notion of an ordered ba-

sis of a vector space often used to study the extrinsic differential geometry of smooth manifolds

embedded in a homogeneous space. Here, N2(s) is a unit normal vector and N3(s) is perpen-

dicular to the vectors N1(s) and N2(s), that is, N3(s) = N1(s) × N2(s) for every parameter

s.

Since the frame (N1, N2, N3) is orthonormal under the inner product of Euclidean space E3,

change of the frame and its derivative is given by the following matrix N ′
1

N ′
2

N ′
3

 =

 0 κ1 κ2

−κ1 0 κ3

−κ2 −κ3 0

 N1

N2

N3

 (1)

where the exterior derivative of N1(s) with respect to s decomposes uniquely as N ′
1(s) =∑2

j=1 κj+1Nj+1 which is the curvature vector of α, while κ3 measures the twisting of this

framing. The Frenet-Serret frame, Bishop frame and Darboux frame on a curve are some simple

examples of a moving frame. Now, let us see this fact using the frame given Eq.(1).

Assume that the curvature vector of the curve α never vanishes then we can write that κ2 is

zero and κ = κ1 = ∥N ′
1(s)∥ . In this case, N2 = N is principal normal vector of the Serret-Frenet

frame (T,N,B = T ×N) , whose twisting out of the plane of curvature κ3 is the torsion which

measures how sharply it is twisting out of the plane of curvature.

If the Eq. (1) is defined by the condition κ3 = 0 then we can easily obtain the parallel transport

frame or Bishop frame. Bishop [2] defined a new frame for a curve and he called it Bishop

frame which is well defined even if the curve has vanishing second derivative in 3−dimensional

Euclidean space. Using the equations N1(s) = N(s), N2(s) = C(s) and N3(s) = W (s) we get

the alternative moving frame defined by [15].

Let M be a surface with a unit normal vector η and α be an arclenghted curve on M . If we

choose η = N2 and ξ = N3 defined by α′ × η = ξ (ξ is called a unit normal vector field of M)



Y.YAYLI, et al: EXTENDED RECTIFYING CURVES ... 21

then (α′ = T, η, ξ) is called Darboux frame. Here, the derivative of the curvature vector of the

curve α as T ′ = κgη + κnξ where κg = κ1 is the geodesic curvature of α on M and κn = κ2

is the normal curvature of the surface M in the direction T. It is well known that, if κg = 0,

then the curve is called a geodesic, if κn = 0, then the curve is called an asymptotic and if τr
= κ3 = 0, then the curve is called a principal curve.

In the theory of space curves, the Darboux vector is the areal velocity vector of the moving

frame of a space curve. It is also called angular momentum vector, because it is directly propor-

tional to angular momentum. The direction of the Darboux vector is that of the instantaneous

axis of rotation, its angular speed is ϑang =
√

κ2
1 + κ2

2 + κ2
3 . In terms of the moving frame

apparatus, the general Darboux vector field D can be expressed as

D(s) = κ3(s)N1(s)− κ2(s)N2(s) + κ1(s)N3(s) (2)

and it has the following symmetrical properties:

D ×N1 = N ′
1,

D ×N2 = N ′
2,

D ×N3 = N ′
3,

where × is the wedge product in Euclidean space E3. Considering Serret Frenet apparatus

{T,N,B,κ, τ} of any unit speed curve α, Izumiya and Takeuchi [11] defined the modified Dar-

boux vector field D̃ =
( τ

κ

)
(s)T (s) + B(s) under the condition that κ(s) ̸= 0 and the unit

modified Darboux vector field˜̃
D =

(
1√

τ2 + κ2

)
(s) {τ(s)T (s) + κ(s)B(s)}

along the curve α. Also, we can construct a new modified Darboux vector field. D = T (s) +(κ
τ

)
(s)B(s) under the condition that τ(s) ̸= 0.

3. Extended rectifying curves as a new kind of modified Darboux vectors

In this section, we define some modified Darboux vectors which are special cases of the

general Darboux vector field in Eq.(2-2). First of all we give some well known useful notions

about rectifying curves and then we extend rectifying curves and obtain some characterizations

of them. Here one important point is that the orthonormal frame by the condition κ2 = 0

is different from the Frenet frame. Because only if κ1 = κ and κ3 = τ in Eq.(1) then the

orthonormal frame is the Frenet frame.

After this, we will consider the orthonormal frame with the condition zero curvature κ2 but

we note that the frame is Frenet frame for the above special case.

Theorem 3.1. [3] Let α : I ⊂ R → E3 be a unit speed curve in Euclidean space E3 with κ ̸= 0.

Then, α is congruent to a rectifying curve if and only if the ratio of torsion and curvature of

the curve is a nonconstant linear function in arclength function s, i.e.,
τ

κ
= c1s + c2 for some

constants c1 and c2 with c1 ̸= 0.

Definition 3.1. For a regular curve α in E3 with κ ̸= 0, the curve given by the Darboux vector

d = τT + κB is called the centrode of α and the curves C± = α± d are called the co-centrodes

of α.

Theorem 3.2. [4] The centrode of a unit speed curve in E3 with nonzero constant curvature

κ (nonconstant curvature) and nonconstant torsion τ (nonzero constant torsion) is a rectifying

curve.
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Conversely, every rectifying curve in E3 is the centrode of some unit speed curve with nonzero

constant curvature and nonconstant torsion (nonzero constant torsion and nonconstant curva-

ture).

Definition 3.2. Let α : I ⊂ R → E3 be a unit speed curve in Euclidean space E3 with

orthonormal frame apparatus {N1, N2, N3,κ1,κ3}. We define a Darboux vector field D =

κ3(s)N1(s) + κ1(s)N3(s) along the curve α. Also, we define the vector fields called modi-

fied Darboux vector fields D̃ =

(
κ3

κ1

)
(s)N1(s) + N3(s) under the condition κ1(s) ̸= 0 and

D = N1(s) +

(
κ1

κ3

)
(s)N3(s) under the condition κ3(s) ̸= 0.

Definition 3.3. Let α : I ⊂ R → E3 be a unit speed curve in Euclidean space E3 with the

frame apparatus

{
N,C =

N ′

∥N ′∥
,W = N × C, f, g

}
defined by Uzunoğlu et al [15]. We define

a Darboux vector field as D = g(s)N(s) + f(s)W (s) along the curve α. Also, we define the

vector fields called modified Darboux vector fields D̃ =

(
g

f

)
(s)N(s)+W (s) under the condition

f(s) ̸= 0 and D = N(s) +

(
f

g

)
(s)W (s) under the condition g(s) ̸= 0.

Theorem 3.3. Let α : I ⊂ R → E3 be a unit speed curve in Euclidean space E3 with orthonormal

frame apparatus {N1, N2, N3,κ1,κ3}. Then the following statements hold.

i:

(
κ3

κ1

)
(s) is the geodesic curvature of the curve β = N1(s) where sβ is arc-length pa-

rameter of the curve β and κ1(s) ̸= 0.

ii:

(
κ1

κ3

)
(s) is the geodesic curvature of the curve γ = N3(s) where sγ is arc-length

parameter of the curve γ and κ3(s) ̸= 0.

Proof. For the curve N1(s) with its Frenet apparatus {Tβ, Nβ, Bβ,κβ, τβ} we have

Tβ(sβ)
dsβ
ds

= κ1(s)N2(s) (3)

From (3), we get
dsβ
ds

= κ1(s) and Tβ(sβ) = N2(s). Differentiating the last equality with respect

to s and by using (1), we get

κβNβ(sβ) = {−κ1(s)N1(s) + κ3(s)N3(s)}
ds

dsβ
,

= −N1(s) +

(
κ3

κ1

)
(s)N3(s), (4)

If we take the norm of the last equality, we obtain

κβ =

√
1 +

(
κ3

κ1

)2

(s). (5)

On the other hand, since kn = 1 and κ2
β = (kn)

2 + (kg)
2, we can easily see that (kg)β =

κ3

κ1
for

κ1(s) ̸= 0.

Similarly, for the curve γ(sγ) = N3(s) with its Frenet vectors {Tγ , Nγ , Bγ ,κγ , τγ}, we can

easily see that (kg)γ =
κ1

κ3
for κ3(s) ̸= 0. This completes the proof. �
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The following two corallaries are given without their proofs. Because they can proved with

the similar method of the above proof of theorem.

Corollary 3.1. Let α : I ⊂ R → E3 be a unit speed curve in Euclidean space E3 with Frenet

frame apparatus {T,N,B,κ, τ}. Then the following statements hold.

i:
( τ

κ

)
(s) is the geodesic curvature of the curve β = T (s) where sβ is arc-length parameter

of the curve β and κ(s) ̸= 0.

ii:
(κ
τ

)
(s) is the geodesic curvature of the curve γ = B(s) where sγ is arc-length parameter

of the curve γ and τ(s) ̸= 0.

Corollary 3.2. Let α : I ⊂ R → E3 be a unit speed curve in Euclidean space E3 with the frame

apparatus

{
N,C =

N ′

∥N ′∥
,W = N × C, f, g

}
defined by Uzunoğlu et al. [15]. Then the following

statements hold.

i:

(
g

f

)
(s) is the geodesic curvature of the curve β = N(s) where sβ is arc-length parameter

of the curve β and f(s) ̸= 0.

ii:

(
f

g

)
(s) is the geodesic curvature of the curve γ = W (s) where sγ is arc-length param-

eter of the curve γ and g(s) ̸= 0.

Definition 3.4. Let α : I ⊂ R → E3 be a unit speed curve in Euclidean space E3 with or-

thonormal frame apparatus {N1, N2, N3,κ1,κ3}. Then, the curve β̄(sβ) =
∫
N1(s)ds is called

conical geodesic curve if

(
κ3

κ1

)′
(s) is a non-zero constant function where κ1(s) ̸= 0. Similarly,

the curve γ̄(sγ) =
∫
N3(s)ds is called another conical geodesic curve if

(
κ1

κ3

)′
(s) is a non-zero

constant function where κ3(s) ̸= 0.

In the sequel, we will consider the curves β̄ and γ̄ are
∫
N1(s)ds and

∫
N3(s)ds, respectively.

Theorem 3.4. Let α : I ⊂ R → E3 be a unit speed curve in Euclidean space E3 with any

orthonormal frame apparatus {N1, N2, N3,κ1,κ3}. Then, the modified Darboux vector field D̃

with non-constant geodesic curvature (kg)β of the curve β is rectifying curve if and only if

every rectifying curve is the modified Darboux vector of some unit speed curve with non-constant

geodesic curvature. Similarly, the modified Darboux vector field D with non-constant geodesic

curvature (kg)γ of the curve γ is rectifying curve if and only if every rectifying curve is the

modified Darboux vector of some unit speed curve with non-constant geodesic curvature.

Proof. Let α : I ⊂ R → E3 be a unit speed curve in Euclidean space E3 with orthonormal frame

apparatus {N1, N2, N3,κ1,κ3}. Then, the modified Darboux vector field D̃ =

(
κ3

κ1

)
(s)N1(s)+

N3(s) under the condition that (kg)β is non-constant. Differentiating D̃ with respect to s and

applying (1), we have

dD̃

ds̃

ds̃

ds
=

(
κ3

κ1

)′
(s)N1(s)

which implies that as the unit tangent vector field of D̃ denoted by T
D̃

is parallel to the vector

field T (s), that is,

T
D̃

= N1(s). (6)
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On the other hand, we can easily see that

s̃ =

(
κ3

κ1

)
(s) + λ, λ ∈ R. (7)

Differentiating the Eq.(6) with respect to s, we get

κ
D̃
N

D̃
(s̃)

(
κ3

κ1

)′
(s) = κ1(s)N2(s).

So, the principal vector field of D̃ denoted by N
D̃

is parallel to the vector field N2(s) , that is,

N
D̃

= N2(s) (8)

and the curvature of D̃ is given by

κ
D̃

=
κ1(
κ3

κ1

)′ . (9)

If we differentiate the Eq.(7) with respect to s, then we can easily obtain that

B
D̃

= N3(s) (10)

and the torsion of D̃ is given by

τ
D̃

=
κ3(
κ3

κ1

)′ (11)

The equations (9) and (10) give us

τ
D̃

κ
D̃

=

(
κ3

κ1

)
(s) = s̃− λ, λ ∈ R (12)

and using the Theorem (3), we have the modified Darboux vector field D̃ with non-constant

geodesic curvatures (kg)β of the curve β is rectifying curve,

Conversely, we assume that α : I ⊂ R → E3 be a unit speed rectifying curve in Euclidean

space E3. Then, using a similar method of the proof of Theorem (1) in [4] we obtain that the

modified Darboux vector field D̃ is rectifying curve.

Similarly, we can easily proved this fact for the modified Darboux vector field D = N1(s) +(
κ1

κ3

)
(s)N3(s) under the condition κ3(s) ̸= 0.

These complete the proof. �

Corollary 3.3. Let α : I ⊂ R → E3 be a unit speed nonhelical curve in Euclidean space

E3 with Frenet frame apparatus {T,N,B,κ, τ}. Then, the modified Darboux vector field D̃ is

rectifying curve if and only if every rectifying curve is the modified Darboux vector of some unit

speed nonhelical curve. Similarly, the modified Darboux vector field D is rectifying curve if and

only if every rectifying curve is the modified Darboux vector of some unit speed nonhelical curve.

Proof. It is obvious from the above theorem using Serret-Frenet formulas. �

Corollary 3.4. Let α : I ⊂ R → E3 be a unit speed nonslant curve in Euclidean space

E3 with the frame apparatus

{
N,C =

N ′

∥N ′∥
,W = N × C, f, g

}
defined by Uzunoğlu et al [15].

Then, the modified Darboux vector field D̃ is rectifying curve if and only if every rectifying

curve is the modified Darboux vector of some unit speed nonslant curve. Similarly, the modified

Darboux vector field D is rectifying curve if and only if every rectifying curve is the modified

Darboux vector of some unit speed non W -slant curve.
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Proof. It is obvious from the above theorem using alternative frame formulas in [15]. �

Theorem 3.5. Let α : I ⊂ R → E3 be a unit speed curve in Euclidean space E3 with orthonormal

frame apparatus {N1, N2, N3,κ1,κ3}. Then, the curves β̄ and γ̄ are rectifying curves if and only

if the curves β̄ and γ̄ are conical geodesic curves.

Proof. Since the curve β̄ is rectifying curve
τβ̄
κβ̄

is a linear function, that is,
τβ̄
κβ̄

= λs+ µ, λ and

µ are constants. By using the equations (3.3) and (3.4) we get

τβ̄
κβ̄

=
κ3

κ1
= λs+ µ, λ ∈ R−{0} and µ ∈ R.

Then

(
κ3

κ1

)′
is a nonzero constant function. So, the curve β̄ is conical geodesic curve.

Conversely, assume that β̄ is conical geodesic curve. Then

(
κ3

κ1

)′
is a nonzero constant

function. Using the relations between the curvatures of β̄ and the curvatures of α, we have
κ3

κ1
=

τβ̄
κβ̄

= λs+ µ, λ ∈ R−{0} and µ ∈ R. Consequently, the curve β̄ is rectifying curve.

Similarly, we can easily proved this fact for the curve γ̄.

These complete the proof. �

The following two corollaries are given without their proofs. Because they can proved with

the similar method of the above proof of theorem.

Corollary 3.5. Let α : I ⊂ R → E3 be a unit speed curve in Euclidean space E3 with Frenet

frame apparatus {T,N,B,κ, τ}. Then, the curves
∫
T (s)ds and

∫
B(s)ds are rectifying curves

if and only if the ratios
( τ

κ

)′
and

(κ
τ

)′
are non-zero constant functions, respectively.

Corollary 3.6. Let α : I ⊂ R → E3 be a unit speed curve in Euclidean space E3 with the

frame apparatus

{
N,C =

N ′

∥N ′∥
,W = N × C, f, g

}
defined by Uzunoğlu et al[15]. Then, the

curves
∫
N(s)ds and

∫
W (s)ds are rectifying curves if and only if the ratios

(
g

f

)′
and

(
f

g

)′

are non-zero constant functions, respectively.

Theorem 3.6. Let α : I ⊂ R → E3 be a unit speed curve in Euclidean space E3 with any

orthonormal frame apparatus {N1, N2, N3,κ1,κ3}. Then, the curve
∫
N1(s)ds is rectifying curve

with non-constant ratio
κ3

κ1
and κ1 ̸= 0 if and only if one of the curves C̃± =

∫
N1(s)ds± D̃(s)

is a rectifying curve.

Similarly, the curve
∫
N3(s)ds is rectifying curve with non-constant ratio

κ1

κ3
and κ3 ̸= 0 if

and only if one of the curves C± =
∫
N3(s)ds±D(s) is a rectifying curve.

Corollary 3.7. Let α : I ⊂ R → E3 be a unit speed nonhelical curve in Euclidean space

E3 with Frenet frame apparatus {T,N,B,κ, τ}. Then, the curve α is rectifying curve with non-

constant ratio
τ

κ
and κ ̸= 0 if and only if one of the curves C̃± =

∫
T (s)ds±D̃(s) is a rectifying

curve.

Similarly, the curve α is rectifying curve with non-constant ratio
κ
τ

and τ ̸= 0 if and only if

one of the curves C± =
∫
B(s)ds±D(s) is a rectifying curve.
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Corollary 3.8. Let α : I ⊂ R → E3 be a unit speed nonslant curve in Euclidean space E3 with

the frame apparatus

{
N,C =

N ′

∥N ′∥
,W = N × C, f, g

}
defined by Uzunoğlu et al[15]. Then, the

curve
∫
N(s)ds is rectifying curve with non-constant ratio

g

f
and f ̸= 0 if and only if one of the

curves C̃± =
∫
N(s)ds± D̃(s) is a rectifying curve.

Similarly, the curve
∫
W (s)ds is rectifying curve with non-constant ratio

f

g
and g ̸= 0 if and

only if one of the curves C± =
∫
W (s)ds± D(s) is a rectifying curve.

Theorem 3.7. Let α : I ⊂ R → E3 be a unit speed curve in Euclidean space E3 with any

orthonormal frame apparatus {N1, N2, N3,κ1,κ3}. If the ratio
κ3

κ1
= tan s with κ1 ̸= 0 then

D̃(s) = sec sY(s) is a rectifying curve where Y(s) = sin sN1(s) + cos sN3(s) is a curve in S2.

Similarly, if the ratio
κ1

κ3
= tan s with κ3 ̸= 0 then D(s) = sec sY(s) is a rectifying curve

where Y(s) = cos sN1(s) + sin sN3(s) is a curve in S2.

Proof. From the Definition (3.1) we have D̃ =

(
κ3

κ1

)
(s)N1(s) + N3(s) or D̃ = tan sN1(s) +

N3(s) = sec s(sin sN1(s) + cos sN3(s)). Similarly, we can easily prove the other case. These

complete the proof. �

Corollary 3.9. Let α : I ⊂ R → E3 be a unit speed nonhelical curve in Euclidean space E3

with Frenet frame apparatus {T,N,B,κ, τ}. If the ratio
τ

κ
= tan s with κ ̸= 0 then D̃(s) =

sec sY (s) is a rectifying curve where Y (s) = sin sT (s) + cos sB(s) is a curve in S2.

Similarly, if the ratio
κ
τ

= tan s with τ ̸= 0 then D(s) = sec sY (s) is a rectifying curve where

Y (s) = cos sT (s) + sin sB(s) is a curve in S2.

Corollary 3.10. Let α : I ⊂ R → E3 be a unit speed nonslant curve in Euclidean space

E3 with the frame apparatus

{
N,C =

N ′

∥N ′∥
,W = N × C, f, g

}
defined by Uzunoğlu et al [15].

If the ratio
g

f
= tan s with f ̸= 0 then D̃(s) = sec sY(s) is a rectifying curve where Y(s) =

sin sN(s) + cos sW (s) is a curve in S2.

Similarly, if the ratio
f

g
= tan s with g ̸= 0 then D(s) = sec sY(s) is a rectifying curve where

Y(s) = cos sN(s) + sin sW (s) is a curve in S2.

Example 3.1. We draw the picture of the curve

α(s) =


3− 2

√
2

2
√
2

sin((
√
2+1)s)− 3 + 2

√
2

2
√
2

sin((
√
2−1)s),

−3− 2
√
2

2
√
2

cos((
√
2+1)s) +

3 + 2
√
2

2
√
2

cos((
√
2−1)s),

1√
2
sin s


in figure 1. Then we illustrate its modified centrode D(s) and the spherical curve Y (s) regarded

D(s) in figure 2.
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Figure 1. The curve α(s).

Figure 2. The modified centrode D of α and the spherical curve Y (s).

Example 3.2. We draw the picture of the curve

β(s) =
(
3s− s3, 3s2, 3s+ s3

)
in figure 3. Then we illustrate its modified centrode D(s) and the spherical curve Y (s) regarded

D(s) in figure 4.

Figure 3. The curve β(s).
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Figure 4. The modified centrode D of β and the spherical curve Y (s).

4. Notes on rectifying developable surfaces

In differential geometry, a developable surface has zero Gaussian curvature. In three dimen-

sions all developable surfaces are ruled surfaces. A ruled surface in E3 is the map F(α,δ) :

I ×R → E3 defined by F(α,δ)(s, u) = α (s) + uδ (s) where α is a base curve and δ is the director

curve.

Let α be a unit speed curve with non-zero curvature κ . Izumiya and Takeuchi [11] defined

the following developables of the curve α.

Definition 4.1. Let α be a unit speed curve with κ ̸= 0 in Euclidean space E3 with Frenet

apparatus {T,N,B,κ, τ}. A ruled surface F
(α,D̃)

(s, u) = α (s) + u D̃ (s) is called the rectifying

developable of α, F(B,T )(s, u) = B (s) + u T (s) is called the Darboux developable of α and

F
(
˜̃
D,N)

(s, u) =
˜̃
D (s) + uN (s) is called the tangential Darboux developable of α.

In this study, firstly we defined extended rectifying developables of the curve α and then we

characterize some special types of ruled surface obtained by choosing the base curve as one of

the integral curves of Frenet vector fields and the director curve δ as the extended modified

Darboux vector fields.

Definition 4.2. Let α be a unit speed curve in Euclidean space E3 with any orthonormal frame

apparatus {T,N2, N3,κ1,κ3} . We define the following extended rectifying developables of the

curve α;

i: Considering
κ3

κ1
is nonconstant, we define F̃

(α̃,D̃)
(s, u) = α̃ (s) + u D̃ (s) where α̃ (s) =∫

N1(s)ds.

ii: Considering
κ1

κ3
is nonconstant, we define F (α,D)(s, u) = α (s) + u D (s) where α (s) =∫

N3(s)ds.

Theorem 4.1. Let α be a unit speed curve in Euclidean space E3 with orthonormal frame

apparatus {N1, N2, N3,κ1,κ3} .

i: Let α̃ (s) =
∫
N1(s)ds be a unit speed curve in Euclidean space E3 with nonconstant ratio

κ3

κ1
. Then the curve α̃ (s) is a conical geodesic if and only if the rectifying developable

F̃
(α̃,D̃)

is a conical surface.
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ii: Let α (s) =
∫
N3(s)ds be a unit speed curve in Euclidean space E3 with nonconstant

ratio
κ1

κ3
. Then the curve α (s) is a conical geodesic if and only if the rectifying developable

F (α,D)(s, u) is a conical surface.

Proof. Assume that the curve α̃ (s) is a conical geodesic. Then the singular locus of F̃
(α̃,D̃)

is

given by

f(s) = α̃ (s)− 1(
κ3

κ1

)′
(s)

D̃ (s) .

Differentiating the last equation, we get

f ′(s) =

(
κ3

κ1

)′′
(s)

1(
κ3

κ1

)′2

(s)

D̃ (s) .

Since α̃ (s) is a conical geodesic we have
κ3

κ1
= λs+ µ, λ ∈ R−{0} and µ ∈ R. So,

(
κ3

κ1

)′′
= 0

and therefore, f ′(s) = 0. Consequently, we can easily see that the rectifying developable F̃
(α̃,D̃)

is a conical surface.

Conversely, if the rectifying developable F̃
(α̃,D̃)

is a conical surface then we can easily see that

the curve α̃ (s) is a conical geodesic.

Similarly, we can easily proved this fact for the curve α. These complete the proof. �

Corollary 4.1. Let α : I ⊂ R → E3 be a unit speed nonhelical curve in Euclidean space

E3 with Frenet frame apparatus {T,N,B,κ, τ}. Then, the rectifying developable F̃
(α,D̃)

(s, u) =

α (s) + u D̃ (s) is a conical surface if and only if one of the curve α is a conical geodesic curve.

Similarly, the rectifying developable F̃(α,D)(s, u) = α (s) + u D (s) is a conical surface if and

only if the curve α is a conical geodesic curve.

Corollary 4.2. Let α : I ⊂ R → E3 be a unit speed nonslant curve in Euclidean space E3 with

the frame apparatus

{
N,C =

N ′

∥N ′∥
,W = N × C, f, g

}
defined by Uzunoğlu et al [15]. Then, the

rectifying developable F̃
(α̃,D̃)(s, u) = α̃ (s) + u D̃ (s) is a conical surface if and only if one of the

curve α̃ =
∫
N(s)ds is a conical geodesic curve with non-constant ratio

g

f
and f ̸= 0.

Similarly, the rectifying developable F (α,D)(s, u) = α (s) + u D (s) is a conical surface if and

only if one of the curve α =
∫
W (s)ds is a conical geodesic curve with non-constant ratio

f

g
and

g ̸= 0.

Theorem 4.2. Let α be a unit speed curve in Euclidean space E3 with orthonormal frame

apparatus {N1, N2, N3,κ1,κ3} . Then, the tangential Darboux developable
˜̃
F

(α,
˜̃
D)

(s, u) =
˜̃
D(s)+

uN2(s) is a conical surface if and only if the curve α is a N2−slant curve, i.e., its vector field

N2 makes a constant angle with the constant vector field X.

Proof. The singular locus of the the tangential Darboux developable
˜̃
F

(α,
˜̃
D)

(s, u) is given by

ϕ(s) =
˜̃
D(s) + σ(s)N2(s)
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where σ(s) =

κ2
1

(
κ3

κ1

)′

(
κ2
1 + κ2

3

)3/2 . Therefore, ˜̃
F

(α,
˜̃
D)

(s, u) is a conical surface iff ϕ′(s) = 0. Since

˜̃
D

′
(s) = −σ(s)N ′

2(s) we get ϕ′(s) = −σ′(s)N2(s). Hence, σ(s) is a constant function, that is, α

is a N2−slant curve. �

Corollary 4.3. Let α : I ⊂ R → E3 be a unit speed nonslant curve in Euclidean space E3 with

the frame apparatus

{
N,C =

N ′

∥N ′∥
,W = N × C, f, g

}
defined by Uzunoğlu et al [15]. Then, the

tangential Darboux developable
˜̃
F

(
˜̃D,C)

(s, u) =
˜̃D(s) + uC(s) is a conical surface if and only if

the curve α is a C−slant curve.

5. Conclusions

In this paper, we have obtained rectifying curves by using the modified Darboux vector fields

corresponding to any orthonormal frame along a curve. For example, the orthonormal frame

can be considered as some well-known frames such as the Frenet frame, the Darboux frame,

the Bishop frame or the {N,C,W} frame. In particular, choosing the Frenet frame gives some

results obtained in [9].
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H. Hilmi Hacısalihoğlu - for a photograph and biography, see TWMS J. Pure Appl. Math., V.1, N.2, 2010,

p.145


